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Abstract: This paper presents two novel network methods developed for education research. These
methods were used to investigate online discussions and the structure of students’ background
knowledge in a blended university course for pre-service teachers (n = 11). Consequently, these
measures were used for correlation analysis. The social network analysis of the online discussions
was based on network roles defined using triadic motifs instead of more commonly used centrality
measures. The network analysis of the background knowledge is based on the Katz centrality measure
and Jaccard similarity. The results reveal that both measures have characteristic features that are
typical for each student. These features, however, are not correlated when student participation is
controlled for. The results show that the structure and extension of a student’s background knowledge
does not explain their activity and role in online discussions. The limitations and implications of the
developed methods and results are discussed.

Keywords: computer-supported collaborative learning; social network analysis; network roles;
background knowledge; Katz centrality

1. Introduction

Several modern university-level courses employ online discussion as a part of blended learning
that incorporates contact and distance teaching. The discussions might be voluntary (as peer support)
or organized (as exercises connected to other course work). In both instances, the aim of the discussions
is to activate students in their learning through collaboration, with the notion that active participation
should improve learning outcomes.

Using online discussions to collaborate in learning is a part of a field called computer-supported
collaborative learning, or CSCL [1,2]. The pedagogical foundations of CSCL have been laid by
Bereiter and Scardamalia’s work on knowledge building [3,4]. Knowledge building is distinct from
learning in that knowledge building refers to the public knowledge that students construct together
through collaborative efforts. In CSCL, this collaboration is scaffolded with technology. Learning is
an individual process that can happen alongside or during the construction of knowledge.

One example of a model for learning in CSCL is the model of collaborative knowledge building
by Stahl [5]. In this model, each student has his or her own personal understanding, which is then
articulated into public statements. Combining these with other students’ public statements, students
create shared understanding and collaborative knowledge. This again leads to personal comprehension
and understanding. Thus, knowledge is a product of social communication that can be supported with
computers in dedicated knowledge-building environments. According to Stahl [5], one of the most
commonly used methods for communication is the online discussion forum.
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The field of CSCL is not limited to online discussion, but in the context of higher education,
it seems to be one of the most common forms of collaborative learning, and as such, it is widely
discussed in research literature. In online discussion, participants present their thoughts in written
form. Producing the text requires students to structure and clarify their thoughts for others, and thus
allows for longer expressions than would be possible in face-to-face discussions [6].

The research has focused on, for example, participation [7], learning outcomes [8], engagement [9],
how learning is regulated [10,11], or how to better facilitate collaboration [12] and scaffold learning [13].
The research shows that online discussions are—and stay—task-oriented [8], that complex thought and
high levels of knowledge building seem to be possible [14], and that interactions that involve differing
opinions increase discussion, as well as critical thinking [15]. Overall, active participation in online
discussions leads to better learning outcomes [8,10]. However, in online discussions, the number of
messages in itself does not guarantee the quality of dialogue [16], and it seems that argumentation in
a CSCL environment might not increase domain-specific knowledge [17].

Well-organized online collaboration may increase active participation among students and further
improve learning outcomes. This is supported by the finding that more active groups achieve better
grades [8,10]. In general, CSCL seems to have a positive effect on learning in the field of science,
technology, engineering, and mathematics (STEM) education[18].

Successful online collaboration requires an appropriate group size, as small groups achieve
higher levels of knowledge building [19], and larger groups risk generating isolates—that is, one or
more students being left out of the discussion [20]. On the other hand, small groups do not benefit
from online discussions if they meet otherwise, as only some meaningful information is published
online [21]. In practice, facilitating students’ learning processes and stimulating interaction are key
challenges in blended learning [22].

One aspect that has seen less focus is how each student’s personal understanding affects how
they conduct discussion or negotiate perspectives, and there does not seem to be a clear picture of
how students’ background knowledge affects their online activities. Pre-tests are usually used only to
assess learning outcomes (see, e.g., [12,23]). However, it has been shown that in CSCL, knowing what
others know enhances collaborative problem-solving [24] and that students’ backgrounds, which also
include prior knowledge, influence how they discuss online [25].

Generally, background knowledge strongly indicates how well students learn new information [26],
and in classroom problem-solving exercises, higher prior task-specific knowledge leads to better
learning outcomes in individual and collaborative learning [27]. As background knowledge affects
learning, it could also be one possible factor affecting students’ online discussions aiming for
knowledge construction.

1.1. Analysing Online Discussion

Collaborative learning is a complex process [5], and as such, needs suitable methods of analysis.
Analyses of online discussions are focused on texts or part of texts produced by students, or connections
between texts [28]. The research in CSCL began with quantitative analyses of the number or length of
messages, but has now expanded to include multiple different quantitative and qualitative research
methods. These methods include, for example, content analyses, social network analysis, analyses of
log-files, and visual representations of data. Various methods have been used to analyse both learning
processes and learning outcomes at the group level, as well as on the individual level [29].

Social network analysis (SNA) is defined as a set of network theory methods to analyze social
networks [30]. SNA is considered a suitable tool for analyzing patterns of interaction in CSCL [31]
and is widely used (see, e.g., [7,32,33]). One advantage of SNA is that the network analysis allows for
the investigation of complex systems [34], and modelling collaboration, as a network of connected
individuals, thus makes it possible to investigate collaborative learning. A social network consists of
social entities or actors as nodes, and relationships between them as edges. In the social sciences, one of
the most common SNA measures is the various centralities [35], and the same holds true for SNA
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in CSCL [33]. Centrality refers to a node’s position with respect to other nodes within the network.
For example, degree-centrality refers to the number of edges a node possesses, and two nodes with
similar centrality have a similar position. The general interpretation is that the more central a node is,
the more relevant it is. In an online discussion, this would mean that a person with high centrality
would have a more prominent part in the dialogue.

The position of a node does not tell us much about the structure of its connections or, in the
online discussion, the actual pattern of communication. The investigation of these patterns within
the network is possible using network roles [30]. In everyday talk, a role might have several different
meanings. This social role might refer to a place in the social hierarchy with a label, like a boss or
a mother. A role can also be a statement of properties, such as the leader of a group. In CSCL, a role
might refer to one’s social role in the knowledge building [36]. Conversely, a network role is defined
exactly by the associations of the relations a node possesses, and the role might not have a simple
linguistic label. By counting the roles of the nodes, it is possible to examine the structure of a network
and the actual patterns of online communication, and not just the centrality of a position. Use of
network roles could therefore improve currently used network analysis methods based on centrality
measures.

1.2. Research Questions

The aim of our research was to develop novel network analysis methods for education research.
In this study, we present a refined social network analysis method based on network roles instead of
the more common centrality measures. We also introduce a method to collect and explore the structure
of students’ background knowledge. Here, we separate background knowledge to be more general
knowledge of a subject rather than specific prior knowledge of a concept.

We developed these methods in the context of a blended university course about science history
for pre-service science teachers. Consequently, we used these developed methods in an exploratory
case study to investigate if the structure of students’ background knowledge affected the structure of
the online discussions they conduct.

Our research questions were:

• What are the network role counts for students in online discussions of a blended university course?
• What are the structural similarities between each student’s background knowledge and the

aggregated body of knowledge when collected and analyzed with the new method introduced in
this paper?

• Is there a significant relationship between the structural measures of background knowledge and
online discussions in a blended university course?

2. Materials and Methods

Data for this study were collected from a blended university course for pre-service science teachers
(n = 11). The topic of the course was history of physics, and the course is part of the mandatory studies
for physics teachers. The course was divided into seven weeks—an introductory week and six weeks
with consecutive time periods under investigation. These time periods constituted a time span of
roughly 350 years of science history from 1572 to 1928. Each time period was chosen so that they
would represent historical themes. The themes and the time spans are shown in Table 1.

Students were given weekly exercises that started with contextualizing and temporalizing the
historical knowledge by producing 12 associative semantic chains with short explanations of the
associations, using Wikipedia as the main resource. Each chain consisted of a main concept and four
associations. An example of one semantic chain and explanation is shown below.

Isaac Newton [Laws of Mechanics, Falling Apple Story, Robert Hooke, Law of Gravity]
Isaac Newton was an English scholar and philosopher. He wrote Philosophiae Naturalis
Principia Mathematica, where he published three laws of mechanics—that is, Newton’s laws
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of motion. The first law was the law of inertia, the second law was the basic law of dynamics,
and the third law was force and counter-force. In the book, the general law of gravity is
also presented. It is believed that Isaac Newton was inspired to investigate gravity when
he saw an apple in the garden falling to the ground. He was also in correspondence with
Robert Hooke, from whom Newton heard the hypothesis of the sun’s attraction, which is
inversely proportional to the square of the distance. This led Newton to investigate the
matter, and eventually got his theory published.

The contextualizing exercises formed the basis for a face-to-face discussion of the importance
and the meaning of the themes and viewpoints for the time period. The themes and the viewpoint
were connected to an article about the development of some physics concepts in history that the
students were to study more thoroughly during the week. After reading the article, the students
conducted an asynchronous online discussion that was pre-structured by guiding questions, resulting
in four discussion threads each week. The articles and the guiding questions are shown in Appendix A.
The students were instructed to answer the guiding questions and then to comment on each other’s
answers. Students were encouraged to continue the dialogue after the initial comments. Both the
associative semantic chains with explanations and the online discussion were graded during the course.
The grades were used to validate the appropriateness of the data used in this study.

The semantic chains were used to evaluate students’ background knowledge through similarity
analysis. Likewise, students’ participation in the online discussions were assessed by calculating
the network-based roles in the discussions. The results of the two analyses were then used for
correlation estimates.

Table 1. Time periods and themes under the weekly investigations.

Period Time Span Theme

1st 1572–1704 Scientific revolution
2nd 1704–1789 Enlightenment and the science of enlightenment
3rd 1789–1848 Industrialization and liberal educational ideal
4th 1848–1900 Technologizing society and its science
5th 1900–1914 Modern science and technologicalization I
6th 1914–1928 Modern science and technologicalization II

2.1. Role Analysis of Online Discussion

The weekly online discussions resulted in a set of six log-files. Python-script was used to parse
the discussions from the log-files for generating a network consisting of students as nodes and directed
edges representing the communication between students—that is, who sent a message to whom during
the discussion. Now, the interaction patterns could be analyzed as roles in the network.

The network roles are defined for triads, and the triadic census is the count of the various
types of triads in the network [30]. A triad is a sub-graph of three nodes, that is, a subset of three
actors. The sub-graphs can be induced by containing all original edges, or the sub-graphs can be
partial. The sub-graph patterns that seem to occur more frequently in natural networks than in
a randomized network are called network motifs, and these motifs are considered the building blocks of
networks [37,38]. A node’s role can be defined as its relational position in a triadic motif.

McDonnell et al. [39] presented a method to compute roles in a directed network based on
triadic motif-role fingerprints. Directed networks have 30 different types of motif-role fingerprints in
13 different motifs. The motif-roles are grouped into nine distinct roles. The motif-role fingerprints,
motifs, and roles are shown in Table 2. These roles can be either structural or functional roles
that correspond to a network’s induced and partial sub-graphs. Basically, the structural roles are
the building blocks of the network, and the functional roles are all possible patterns for edges in
a network. For example, in a neural network, the synaptic connections form the structural roles, but the
functional roles describe all possible synaptic activation patterns. In an online discussion, the structural
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roles represent the actual structure of the discussion, and the functional roles represent all possible
communications which the individuals had or could have had during the discussions. The functional
roles could also be interpreted as the possible social relationships between the individuals conducting
the discussion.

Each node can have only one structural role in a triad, but up to three functional roles. For example,
if a node has the structural role of relay, it additionally has the functional roles of 1-sink and 1-source.
In an online discussion, 1-sink corresponds with receiving a message, and 1-source with sending
a message. In a highly connected network, all nodes are part of multiple motifs, and therefore also
have multiple structural and functional roles.

In addition to roles and motif-roles, Table 2 shows all the equations to calculate the number of
functional role-motifs for each node from a network’s adjacency matrix. The matrix FR (30:N) contains
all functional motif-role fingerprints, with the ith column corresponding to the motif-roles of the node
i. From FR, it is possible to obtain the structural motif-roles fingerprint matrix SR with the conversion
matrix representing the relations between the structural and the functional motif-roles (see Equation (2)
in [39]). To obtain the counts of the nine roles, we simply summed up the motif-role counts related to
each role presented by the rows in Table 2 and got matrix F9 or S9 of size (9:N).

A network with N nodes has (N
3 ) possible triads, and therefore, the number of roles a node can

play increases with the size of the network. For a complete graph, that is, a fully connected network,
each node is a part of all triads. Additionally, each triad consists of 3/N of the nodes in the network,
and the sum:

St =

(
N
3

)
3
N

(1)

yields the number of complete triads a node is part of in a complete graph. For a triad with three
reciprocal edges (complete 3-graph), the maximum functional roles for a node are:

mfr = [6, 6, 6, 4, 4, 8, 8, 8, 4].

Using this information, it is possible to calculate the normalized role counts F9N by element-wise
(Hadamard) division:

F9N,i = F9,i �
(

N
3

)
3
N

mfr> i = 1, 2, . . . , N. (2)

Now we have a functional role count, or the role census, that is independent of the size of the
network, and each role count has a value between [0, 1]. This normalized role census was counted for
each student in all six discussions and visualized with heat maps. The functional role with the highest
count was noted for each student in each discussion, as it represents the main role or action of the
student in that discussion. We also counted the average role count for each role in each discussion and
used heat maps to represent functional roles around that average. This visualization was performed to
obtain another viewpoint of the difference of the roles between the students. Additionally, a structural
role matrix was produced from FR and summed for S9. These nine structural roles were presented
with heat maps as well.
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Table 2. Adapted from [39]. Formulae for counting the functional three-node motif-role fingerprints
from adjacency matrix A. The nine roles are depicted in the first column, and the rows show the related
motif-role fingerprints (r = 1...30). m = 1...13 shows which motif each role-motif is a part of. 1 is
a N × 1 unit column matrix, I is a N × N identity matrix, R = A ◦ A> is the matrix of reciprocal edges,
and ◦ denotes a Hadamard product.

Role Motif-Roles

r = 1 r = 2 r = 3
m = 1 m = 2 m = 3

1-sink A>(A− I)1 ((A>)2 − R)1 (A>R− R ◦ A)1

r = 4 r = 5 r = 6
m = 2 m = 4 m = 7

1-source (A2 − R)1 A(A> − I)1 (AR− A ◦ R)1

r = 7 r = 8 r = 9
m = 3 m = 7 m = 8

1-recip (RA− R ◦ A)1 (RA> − R ◦ A)1 R(R− I)1

r = 10 r = 11 r = 12
m = 4 m = 5 m = 6

2-sink 1
2 A>1 ◦ (A> − I)1 ((A>A) ◦ A>)1 1

2 ((A>R) ◦ (A>)1

r = 13 r = 14 r = 15
m = 1 m = 5 m = 11

2-source 1
2 A1 ◦ (A− I)1 (A2 ◦ A)1 1

2 ((AR) ◦ A)1

r = 16 r = 17 r = 18 r = 19
m = 2 m = 5 m = 9 m = 10

relay A>1 ◦ A1− R1 ((AA>) ◦ A>)1 (A2 ◦ A>)1 ((AR) ◦ A>)1

r = 20 r = 21 r = 22 r = 23
m = 7 m = 10 m = 11 m = 12

relay & sink (R1) ◦ ((A> − I)1) ((RA) ◦ A>)1 ((A>A) ◦ R)1 (R2 ◦ A>)1

r = 24 r = 25 r = 26 r = 27
m = 3 m = 6 m = 10 m = 12

relay & source (R1) ◦ ((A− I)1) ((RA) ◦ A)1 ((A2 ◦ R)1 ((AR) ◦ R)1

r = 28 r = 29 r = 30
m = 8 m = 12 m = 13

all 1
2 R1 ◦ ((R− I)1) ((RA) ◦ R)1 1

2 (R2 ◦ R)1

2.2. Structural Analysis of Background Knowledge

The structure of students’ background knowledge was analysed in the form of networks which
were generated from the associative semantic chains made by students. The semantic chains made by the
students were formed in pair-wise connections, for example, [I.Newton—Newton’s law of gravity] or
[I.Newton—Heliocentrism]. Each concept was a node, and all pairwise associations represented edges
between the nodes. These networks were constructed for each student for each time period consisting
of approximately 40 to 50 pairwise connections. Additionally, one network to represent the overall body
of the background knowledge was aggregated from all students’ answers. Finally, aggregated networks
across all time periods for each student, as well as overall, were generated. The background knowledge
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can be considered to represent the shared consensus of relevant topics among the students, and none
of those pair-wise connections were assessed for their relevance or accuracy.

Katz and degree centralities (number of edges attached to node) were computed for the network,
representing the overall body of background knowledge. Katz centrality [40,41] is based on counting
paths of different lengths from one node to other nodes, and it contains a damping factor for these
paths, which allows us to tune how extensive an amount of the network is explored. Hence, Katz
centrality is suitable in finding which nodes are the most relevant in contributing to overall global
connectivity, and in this way, the most relevant concepts of the background knowledge. Katz centrality
can be expressed as a column vector [40]:

K =

(
∞

∑
i=0

Ai

αi

)
|1〉, (3)

where Ai is the ith power of the adjacency matrix describing the number of i length paths in the
network, and damping factor α sets how much paths of different lengths are weighted. In this study,
α was chosen to be between 1.042 to 1.124 times the largest eigenvalue of each given network so that
the sum converges, and the global connectivity of paths contributes to Katz centrality.

The overall background knowledge for each period was formed by aggregating all students’
answers, and can be considered to represent the shared consensus of relevant topics among students.
The Jaccard similarity coefficient [42] was used to assess the knowledge that each individual student
managed to extract from Wikipedia during these weekly exercises before the online discussion,
and how this knowledge compared to other students’ knowledge. Each student’s contribution to this
background knowledge can be expressed as a sub-graph of the overall network, and this contribution
could now be evaluated quantitatively using the Jaccard similarity coefficient and Katz centrality;
the higher the similarity of a given student’s network to the aggregated network, the higher the
student’s contribution to the overall body of the background knowledge, and the greater the potential
for a beneficial online discussion. For each student’s contribution, Katz centrality was used to find the
Jaccard similarity coefficient:

J(K, K∗) =
∑i K∗i
∑i Ki

, (4)

where ∑i K∗i is the sum of Katz centrality values of those nodes that appear in one student’s pair-wise
connections, and ∑i Ki is the overall sum of Katz centrality values of a given network.

2.3. Correlation Analysis

Now we have a structural measure for both the students’ background knowledge and the
online discussion. To evaluate the statistical correlation between the two measurements, we chose
to use Spearman’s rank correlation coefficient and Kendall’s tau-b coefficient. These non-parametric
measures were chosen as the data we had was non-linear and there was no assumption of distribution.
Both coefficients were computed for each functional role in order not to miss any possible dependencies
within the data. Correlation analysis with structural roles is unsuitable as, in many instances, there are
only a few non-zero values for structural roles. For example, in a highly connected network, some node
could have only the ninth role. Additionally, we exclude insignificant and missing similarities from the
correlation analysis.

3. Results

The results consist of the role counts from each weekly discussion and the similarities as a measure
of background knowledge. The student K contributed to three discussions, but made insignificant
contributions to the background knowledge exercise during the course and eventually dropped out.
Therefore, this student is not part of the similarity results, but is included in the network roles of the
first three periods. All in all, there were 984 messages in the discussions, and on average, each student
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sent 4.9 messages to the discussion threads. On average, students received 87 % and 94 % of maximum
points from the posted messages and the associative semantic chains, respectively.

3.1. Roles

The networks generated from the students’ online discussions are visualized in Figure 1.
The functional and structural roles were computed for each student from these networks and summed
to obtain the nine distinct roles. The structural role counts for each time period are represented as heat
maps in Figure 2.

(a) 1st period (b) 2nd period (c) 3rd period (d) 4th period (e) 5th period (f) 6th period

Figure 1. Graphs from the weekly discussions. Students A to K (clockwise, starting from the top and
edges) represent the responses, that is, who responded to whom. If a student did not participate, only
an outline of the node is shown.

Figure 2. Heat maps representing structural roles, where darkness corresponds to the number of roles
so that white indicates zero roles. One black cell means that the student had only that structural role in
the discussions. Light blue indicates that the student did not participate in the discussion.

The functional role census, that is, the number of each role was counted, and the counts normalized
from the discussion networks. Table 3 shows the main role each student played in the discussions.
Here, the main role is the role that had the highest value in the role census. Due to the nature of the
functional roles, it was possible to have the same number of different roles. In these cases, the highest
of the nine roles was chosen, as it better represents the main role.

Table 3. Main functional role each student played in the weekly discussion.

Student 1st Period 2nd Period 3rd Period 4th Period 5th Period 6th Period

A 1-source 1-recip 1-sink 1-sink 1-source 1-sink
B 2-sink 1-source all 2-source all all
C 2-sink all all all 2-sink 2-source
D 2-source 1-recip 1-sink 1-sink 1-recip 1-recip
E 1-source 1-recip 1-recip 2-source
F 2-sink 1-sink 1-source 1-recip 1-recip
G 1-sink 1-recip 1-recip all
H 1-recip all 1-source all 2-source 2-source
I all 1-source
J 1-recip 1-recip
K 1-sink 1-recip 1-sink
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The normalized role censuses are shown as diverging heat maps in Figure 3. In addition to
normalized role census, the average for each role count in each discussion was calculated. Figure 4
shows the roles around this average, using the same colour scheme as Figure 3.

Figure 3. Diverging heat maps representing the normalized functional roles. The blue and the red
represent no roles and maximum possible roles, respectively. White indicates that the student did not
participate in the discussion.

Figure 4. Diverging heat maps representing the roles around the average. The blue and the red
represent roles below and over the average, respectively. White indicates that the student did not
participate in the discussion.

3.2. Similarities

An example of a network generated from students’ associative semantic chains is shown in
Figure 5a, with one student’s contribution highlighted. In the example, the more central (and thus
larger) nodes include Isaac Newton, Gravity, Johannes Kepler, and Heliocentrism. Less central
concepts, seen at the perimeter of the visualization, included the Reformation, Nicolaus Copernicus,
and Christiaan Huygens.

The similarity of the students’ network to the aggregated network are shown in Figure 5b.
The similarities for the periods range from 0.02 to 0.55, with an average of 0.38.

(a) Network from first period. (b) Similarities.

Figure 5. Example of a network generated from students’ word association chains, with one student’s
contribution highlighted. Katz similarities for each student per time period, and the similarity to the
aggregated network when periods are accumulated.
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3.3. Correlation of Similarities and Roles

Table 4 shows Kendall-τ and Spearman r correlation coefficients. Correlation coefficients between
similarities and network roles were computed for the normalized functional role counts and averaged
role counts. Table 5 shows correlation coefficients when student A is ignored.

Table 4. Kendall-τ and Spearman r coefficients from the correlation analysis for background knowledge
and online discussion roles for each period. * Correlation significant at 0.05.

Kendall-τ Spearman r

Role p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6

1 −0.31 −0.57 * 0.09 −0.32 −0.36 0.12 −0.43 −0.75 * 0.21 −0.56 −0.62 0.22
2 −0.59 * −0.46 0.63 * 0.32 −0.21 −0.53 −0.74 * −0.58 0.76 * 0.36 −0.21 −0.67
3 −0.44 −0.57 * 0.26 −0.32 −0.54 −0.84 −0.67 −0.75 * 0.45 −0.56 −0.68 −0.89 *
4 −0.31 −0.55 * 0.20 −0.22 0.15 0.32 −0.48 −0.70 * 0.43 −0.37 0.15 0.35
5 −0.57 * −0.49 0.51 0.32 0.30 −0.32 −0.76 * −0.62 0.67 * 0.36 0.52 −0.36
6 −0.44 −0.51 0.23 −0.11 0.50 0.11 −0.68 * −0.65 0.44 −0.15 0.59 −0.05
7 −0.33 −0.55 * 0.26 −0.22 0.30 −0.12 −0.62 −0.70 * 0.45 −0.37 0.33 −0.22
8 −0.54 * −0.51 0.29 −0.11 0.45 0.11 −0.73 * −0.65 0.47 −0.15 0.58 −0.05
9 −0.42 −0.55 * 0.26 −0.22 0.26 −0.12 −0.66 −0.70 * 0.45 −0.37 0.34 −0.22

Table 5. Kendall-τ and Spearman r coefficients from the correlation analysis when student A is ignored.
* Correlation significant at 0.05.

Kendall-τ Spearman r

Role p1 p2 p3 p4 p5 p6 p1 p2 p3 p4 p5 p6

1 −0.11 −0.44 −0.19 −0.18 −0.45 −0.71 −0.18 −0.64 −0.13 −0.32 −0.63 −0.77
2 −0.47 −0.30 0.52 0.91 −0.22 −0.18 −0.63 −0.40 0.65 0.95 −0.26 −0.32
3 −0.29 −0.44 0.04 −0.18 −0.77 −0.71 −0.52 −0.64 0.21 −0.32 −0.87 −0.77
4 −0.11 −0.42 −0.04 0.00 0.36 0.71 −0.25 −0.57 0.18 0.00 0.45 0.77
5 −0.44 −0.34 0.37 0.91 0.60 0.18 −0.66 −0.45 0.53 0.95 0.78 0.32
6 −0.29 −0.37 0.00 0.18 0.89 * 0.91 −0.55 −0.49 0.19 0.32 0.95 * 0.95
7 −0.14 −0.42 0.04 0.00 0.60 0.71 −0.45 −0.57 0.21 0.00 0.67 0.77
8 −0.40 −0.37 0.07 0.18 0.84 0.91 −0.61 −0.49 0.24 0.32 0.89 * 0.95
9 −0.25 −0.42 0.04 0.00 0.63 0.71 −0.51 −0.57 0.21 0.00 0.71 0.77

4. Discussion

We used novel network analysis methods to analyze two different exercise types during a blended
university course. The first exercise was related to the background knowledge of students, and the
second exercise was an asynchronous online discussion. The network analysis resulted in structural
measures of students’ background knowledge and online discussion. This allowed us to compare
these two measures to investigate any possible connection between background knowledge and
participation in online discussion.

4.1. Role Analysis

From the structural roles, we can see that the overall structure of the discussion consists of
reciprocal roles, where most edges within the triads are reciprocally connected. The only exception is
student A, who has fewer roles overall, and only some of which are reciprocal. The reciprocal roles
indicate that most of the communication happened back and forth between the students. This tendency
also increases as the number of participants decreases. This most likely resulted from having fewer
people to respond to for the required points. On the other hand, even with all participants, the full
group did not seem to form any distinct sub-groups or isolates that could happen with more than four
participants [20].

The lack of isolates can be seen even more clearly from the functional roles. If such groups had
formed, there would be more role counts under central values, that is, heat maps should show more
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blue. Even considering average roles, this is not visible. Overall, the functional role counts offer more
information about the structure and dynamics of the discussions than the structural roles. Here, we see
the same lack of participation on student A’s part, but it is even more evident. We can also see that most
students have high role counts, but the activity of all participants is not consistent across all periods.

Heat maps with the mean role counts offer a similar view of the discussion activities, but do not
allow comparisons between different discussions with different numbers of participants. For example,
week four clearly has the highest role counts, and therefore also activity in the discussion, as more
messages between participants increases the number of role counts they have. In future, this averaging
of the role counts might not be needed.

Interpreting the heat maps requires some experience and understanding of the functional roles.
The table with the main role for each student is more straightforward to interpret, and it is possible
to see some consistency in the roles for each student. Roles 1-sink, 1 source, and 1-recip relate to
dyadic (i.e., between two nodes) relationships, whereas the other roles connect to triadic relationships.
Students A, D, E, F, G, J, and K mainly had these dyadic relations with others. For example,
in an agent-based model [20,43], small groups should form these reciprocal dyads when sensitivity to
the competitive comparison increases. The three students, B, C, and H instead formed more egalitarian
triads and might have had lower sensitivity for competition. If the decision of whom to communicate
with depends on some social feature, the method shown here can be used to investigate those social
processes or structures.

The weekly discussions were structured and fast-paced, with each taking approximately 2 h with
four discussion threads under the guiding questions. This might result in unnatural discussion patterns,
and thus influence the role census, as students do not have enough time to ponder and reflect on each
message and choose whom to respond to. Instead, students might just take care to post the appropriate
number of messages for points. Hiltz and Goldman [44], who have defined the asynchronous learning
network, note that for beneficial discussions, the students should have the opportunity to read and
respond at the time of their choosing. Research also shows that the quality of students’ posts increases
if they have time to read and re-read each other’s messages [45]. This would mean, for example,
the discussion spanning the whole week with students interacting truly asynchronously when most
convenient, individually. Unfortunately, such discussions are not feasible in short and content-heavy
university courses with several weekly exercises. Additionally, administrative reasons might limit the
possibilities for student exercises without clearly described schedules.

Stahl [5] suggests that online discussion might have more complex implicit structures than what
the connection of notes or messages reveal. This refers to the real-world possibility that whom to reply
to is affected by reading multiple messages and not just by the one message being replied to. In practise,
this could be accounted for by using the meta data from the online forum software. This meta data
usually shows some additional information about what actions were performed beyond just posting
a message. Unfortunately, the meta data from the software used to facilitate the online discussions did
not show what messages each student had opened or read.

Even with the above-mentioned limitations, this study demonstrates that network analysis based
on network roles, as presented by McDonnell et al. [39] can be used to analyse participation in online
discussion. The roles show not only the amount of participation or who has a central position, but
reveals what kind of connections, that is, roles, students tend to form with each other. These roles
provide a useful new method for social network analysis, and anyone planning on using SNA in CSCL
or elsewhere should consider this method. It might be more suitable than the commonly-used methods
based on centrality measures, especially if the aim is to study the dynamics of a social group.

4.2. Similarity Analysis

Results from similarity analysis show that, for the first three periods, the variation in similarities
between the students seems rather small. Afterwards, a few students have clearly smaller similarities,
but they are also not participating in the online discussions. This probably indicates lack of participation
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overall. Even with the small variation, these similarities are able to provide a broad estimate of students’
background knowledge relative to each other. Cumulatively, student B had the highest similarity, but
for the aggregated network, student A had the highest similarity. Both students had good overall
background knowledge, but they exhibit differences in the individual periods.

Overall, this similarity analysis is a novel approach to find a quantitative measure of how much
shared background knowledge each student has compared to other students. In this type of analysis,
the results will depend on the centrality measures used. Here, Katz-centrality was chosen, as previous
research has shown that this method works well with Katz-centrality to reliably investigate student
knowledge landscapes [46].

In this analysis, Jaccard similarity was used to compute the fraction of background knowledge
each student had. This similarity measure, however, is not the only way to compare different networks,
and there is plenty of room to improve this analysis. For example, Rényi entropy of networks can
be used to compute generalized q-Jensen-Shannon divergence between two networks (see, e.g., [47]).
In this way, it is possible to determine how much new information each student’s contribution brings
to the background knowledge.

4.3. Correlation analysis

Some of the correlations between the similarities and the roles seem to be statistically significant.
However, if we remove student A’s contributions, most of the significance disappears. Student A can
be regarded as an outlier in the data, as his or her role counts differ drastically from the normalized
and averaged counts. This is a result of lack of participation in the online discussions. On this basis,
we were unable to find any meaningful correlation between any role, and hence, the discussion activity,
as well as the background knowledge.

One possible reason for the missing correlation could be the small number of participants.
Only 10 students completed the course, and only half participated in each discussion, resulting
in even fewer data points. Each week’s discussion was divided under the guiding questions, but there
was no correlation even with these distinct discussion threads. Furthermore, functional roles should
capture all relevant information from the aggregated discussions. A more likely reason for not seeing
a correlation here is that there are simply no straightforward correlations between these two structural
measures. The reasons for participation are probably numerous and varied. For example, in [25],
background knowledge is one part of a student’s background affecting online discussions. Simple
two-variable analysis is unable to find possible connections and reasons for online activity. Instead,
multivariate analysis would be needed with much larger and varied data sets.

4.4. Limitations and Implications

Relying only on quantitative network methods has some limitations. It would be possible to
extract more information from both the discussions and the background knowledge with qualitative
methods, such as content analysis, but our focus is on developing network analysis methods.
This would allow us to readily analyze larger data sets in the future without time-consuming and
resource-heavy content analysis.

Without content analysis, it could be argued that the associative connections made by students or
the online discussions they conducted are not meaningful. These exercises were graded, and on average,
the students received high scores on both exercises. This indicates that the student contributions in both
exercises were task-specific. With online discussions, this is in line with previous research results [8].

One possible alternative quantitative analysis for the online discussion would have been to
use number of messages, but as Heo et al. [16] noted, the number of messages do not equal quality.
Furthermore, the instructions given to the students did not specify a set number of messages to
receive the maximum points per thread, but in practice, six messages was enough to get the points.
The average message per students being 4.9 shows that not much extra discussion was had. Thus,
it was reasonable to use a method based on network analysis. The method could be improved with
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temporal networks [48] as online discussion is a temporal process by nature. Preliminary investigation
with time slices did not seem promising. Temporal analysis should most likely be done with temporal
motifs [49]. It would need further theoretical work to temporalize the network roles, but it would only
need to be done once.

The constancy in the roles implies some student-related factor which determines the role, although
on the basis of the results presented here, it is not likely to be the background knowledge of the
student. Small similarities with a missing discussion for student E are probably explainable by lack of
participation with the exercises, which might arise from motivation or scheduling problems. Student
A’s high similarity and low role counts could be explained by assuming that a student who knows
material well does not really benefit from discussions and does not invest effort in it. This seems to
indicate that the roles, and the quality, of the discussions are not affected by the prior understanding of
the context. Thus, the plausible hypothesis that intensity or role in the discussion could be determined
by the background knowledge is untenable. Reasons for the distinct roles that different students
play in the discussions must be sought elsewhere than from the structure and the extent of the
background knowledge.

If there is no correlation between background knowledge and online discussion, it would mean
that there is no need to develop students’ understanding of the relevant concepts before conducting
online discussions, or that these activities can be done independently of each other. On the other hand,
good background knowledge could diminish the significance of online discussions. How and when
online discussions are implemented should thus be considered carefully so that they actually build on
and improve students’ knowledge.

The next question we might ask is whether the roles are constant in longer discussions and if
they correlate with other student contributions. The present study demonstrates that network analysis
methods can be used to study blended learning, and we now have suitable tools and methods for
a more extensive study. Both methods shown here could also be further improved with theoretical
work relating to networks.

5. Conclusions

In this study, we set out to develop network analysis-based methods to investigate structural
measures of students’ background knowledge and the structure of online discussion. For the background
knowledge, the network was based on a student exercise with association chains of relevant concepts.
The social network analysis of the online discussion was based on network roles, instead of the more
common centrality measures. These methods were deemed useful and applicable for larger research
projects, but both methods also have room for further development.

The methods developed allowed us to explore the possible connections between background
knowledge and participation in online discussion. This connection was something we identified as
something that had not been addressed before in CSCL literature. According to our results, there
seems to be some student-related factors affecting the roles in the discussion, but on the basis of this
exploratory study, we conclude that the student’s background knowledge is not a strong or likely factor
deciding their participation in the discussions. This factor could be internal or external motivation
related to studying in general or some social aspect, like peer appreciation. The possible lack of
connections between the background knowledge and the roles in the online discussions could imply
that it is possible to build background knowledge and conduct online discussions independently of
each other. Another option would be to utilize only one of the two activities. In differently-organized
discussions and with more students, the results might be different.
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Appendix A. The Guiding Questions Used During the Online Discussions

1st Period
Time span: 1572–1704 Theme: Scientific revolution
Article: L. Rosenfeld (1965), Newton and the law of gravitation [50]
Guiding questions:

1. Which other scientists, according to the article, influenced the formation of Newton’s law
of gravity?

2. What were the insights, observations, or theories that formed the law of gravity?
3. What alternative hypotheses or ideas did Newton or other scientists suggest for the cause of

gravity, according to the article?
4. In what prevailing historical atmosphere was the law of gravity formulated, and could the theory

be formulated earlier?

2nd Period
Time span: 1704–1789 Theme: Enlightenment and the science of enlightenment
Article: E. McMullin (2002), The Origins of the Field Concept in Physics [51]
Guiding questions:

1. How does the concept of interaction develop and how does it relate to the concept of fields?
2. What type of fields does the article introduce and how do they differ?
3. Mention the five most important steps in the development of concept of a field. Present the

observation or theory, and the scientist behind it.
4. Aether is mentioned several times in the article when discussing interactions and fields. Which

scientists supported the concept of the aether and why? Did someone oppose it and why?

3rd Period
Time span: 1789–1848 Industrialisation and liberal educational ideal
Article: D. Sherry (2011), Thermoscopes, thermometers, and the foundations of measurement [52]
Guiding questions:

1. Mention the five most important steps (observation, measurement or theory, and the scientist
behind it) that influenced the quantification of temperature.

2. What are the different options that philosophers of science and historians of scientific history
propose as the first thermometer and why?

3. What other measurement techniques and theory evolved with quantification of temperature and
what was their role in quantification of temperature?

4. Mention the four significant benefits of quantifying temperature and heat.

4th Period
Time span: 1848–1900 Theme: Technologizing society and its science
Article: O. Darrigol (1999), Baconian Bees in the Electromagnetic Fields: Experimenter-Theorists In
Nineteenth-Century Electrodynamics [53]
Guiding questions:

1. Which five observations, experiments, concepts, theories, or instruments were central to the
development of electromagnetism in the 19th century?

2. Select two of the physicists mentioned in the article. What do you consider to be their most
important achievements (up to two)? Why are these achievements central? What factors
contributed to these achievements and what resulted from them?

3. In the article, the physicists represent three different nationalities. What do you think were the
differences in the work of physicists from different countries?

4. For the science historians, Darrigol and Galison, there is clear division of theoretical and
experimental physicists. Who do you think are the two most empirical and the two theoretical
physicists and why?
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5th Period
Time span: 1900–1914 Theme: Modern science and technologicalization I
Article: H. Kragh (2011), Resisting the Bohr Atom: The Early British Opposition [54]
Guiding questions:

1. What was Bohr’s motive for developing the quantum model of the atom? In other words, what
experimental observations did the model explain?

2. Bohr’s model received criticism but also support. Why was the model already supported in 1913?
In other words, what open problems did the model explain?

3. Bohr’s atomic model was not perfect. What were the two biggest weaknesses with the model?
4. Choose the most viable competing theory for the Bohr model and state why it is the most viable.

6th Period
Time span: 1914–1928 Theme: Modern science and technologicalization II
Article: K. Camilleri (2006), Heisenberg and the wave-particle duality [55]
Guiding questions:

1. According to the article, quantum-mechanical interpretation of wave-particle duality divided
physicists into two different camps. How did the views of Schrödinger, Born and Paul differ
from those of Dirac, Jordan, Wigner and Klein?

2. Heisenberg’s view, based on the article, is wave-particle equivalence. What does this mean and
what was its effect?

3. Bohr’s view of wave-particle dualism can be considered classical. How does it differ from
Heisenberg wave-particle equivalence?

4. According to the article, the Copenhagen interpretation can be regarded as a mixed sample, even
from contradictory points of view. From the Wikipedia article, choose two principles you think
are contradictory based on Camiller’s article. Justify your choice.
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